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System 

Abst rac t - In  tiffs paper, we present a theoretical analysis of the fi-equency response of a OOlLtiltuous-flow adsorbs- 
with periodic modulation of the inlet flow-rate to measure multicomponent diffusion !dnetics in porous media. Micro- 
pore diffilsion !dnetics is assumed for the intrapartide mass transfer mechanism and three different shapes of micro- 
particle are considered: slab, cylinder, and sphere. Simulation results for a binary system show that the frequency re- 
sponse of the faster diffusing component is strongly iltfluenced by the slower component. The out-of-phase characteris- 
tic function of the frequency response of the faster diffusing component shows maximum and minimum points. The 
deviation between these maximum and minimum values becomes smaller when the cross-terms of diffusivity go to 
zero, wlfile the deviation becomes larger when the cross-tenns of the adsoiption equilibiiunt constant go to zero. Con- 
b-my to the behaviour of tire out-of-phase function of the faster diffusing component, the out-of-phase ftatction of the 
slower dil~sing component shows no extrema at all. The in-phase characteristic fimction of the frequency response of 
the continuous-flow adsorber is not affected by the overflow parameter. 
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INTRODUCTION 

Because of its importance in the study of catalytic or noncata- 
lytic gas-solid reactions, the problem of gaseous diffusion kinetics 
in porous media has attracted much attention in the literature. As a 
result, a variety of methods for investigation of the idnetics have 
been presented. The mass ~-ansport phenomena in porous meclia 
include contributions from bulk, Knudsen and pore diffusion, and 
viscous flow, which are fitrther complicated by interactions with 
adsorption and surface diffusion on the internal surface of the por- 
ous media. In order to determine reliably the contribution of each 
transport medtm~m and rite relevmlt parameters, some ~,(perimen- 
tal techniques are needed. To achieve this goal, one of the follow- 
ing techniques can be used: gas chromatography, diffusion cell, 
gmvimetlic method using a microbalance, zero length columl, and 
differential adsorption bed The advantages and disadvantages of 
these tect~fiques are reported inthe literature [Park et al., 1996]. 

Recently, a frequency response (FR) method was developed, for 
the investigation of the diffusion and adsorption kinetics in porous 
media [Jordi and Do, 1992, 1993, 1994; Park et al., 1998o, b; Pet- 
kovska and Do, 1998; Sun et al., 1993, 1994; Sun and Bourdin, 
1993; Sun and Do, 1995, 1996; Yasuda and Saeld, 1978; Yasuda, 
1982; Yasuda and Sugawara, 1984]. The potential of this method 
was extended to systems with chemical reactions [Yasuda, 1989; 
1993; Y~asuda et al., 1995]. In rite FR method the fiequency re- 
sponse is usually investigated in a batch system in which the gas 
pressure or concentration is changed by a forced periodic modula- 
tion of the reservoir volume, although FR in continuous flow sys- 
tems with periodic mcxtzlation of the inlet gas concentration [Ngai 
and Gomes, 1996] or the inlet molar flow rate [Park et al., 1998a, 
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b]. The main advantages of FR using modulation of the inlet flow- 
rate over the conventic~tal FR using modulation of the reservoir vol- 
ume are the following [Park et al., 1998a, b]: 

- High frequencies of the inlet molar flow-rate modulations are 
easy to obtain in practice, contrary to volume modulations. 

- Large relative amplitudes of rite ffflet flow-rate can be used. 

The analysis of the multicomponent diffusion in a porous media 
requires knowledge ofboththe main-terms and cross-terms of dif- 
fusivity However, our understanding of multicomponent ditfusion 
is very limited [Qureshi and Wei, 1990; Markovska et al., 1999], 
and a very limited number of papers for the FR of multicomponent 
diffusion are available [Yasuda and Matsumoto, 1989; Sun et al., 
1994]. 

The objective of this paper is to present a theoretical analysis of 
the fiequency response of a continuous-flow adsorber with peri- 
odic modulation of the inlet flow-rote for the multicomponent dif- 
fusion in porous media. Micropore diffusion kinetics is assumed 
for the intvaparticle mass t1-,~lsfel- medtmfism and three different 
shapes of microparticle are considered: slab, cylinder, and sphere. 

PROBLEM FORMATION AND 
MATHEMATICAL MO DE L  

Consider a continuous-stirred gas reservoir, in which a known 
amount of porous particles is loaded The particles are assurned to 
be of tmiform size. At trine t 0, a strealn of an ideal gas mixka-e of 
n components is introduced to the reservoir with periodic flow rate 
and at the same time a flowing stream out of the reservoir is started 
We assume that the system is isothermal, and that the diffusion par- 
ameters are constant. 

The mass balance describing rite concentration disbibufion inside 
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a porous particle for the micropore diffusion kinetics [Park et al., 
1998a] is: 

at = [ D ] ~ r ~ r  Or ) (1) 

where C~ is a vector of dimension n denoting the concentration in 
the micropore within particles and [12)] is a square matrLx of dif- 
fusivities in which the off-diagonal terms are generally non-zero; r 
is the coordinate variable of microparticles within a particle, and 
is a geometric factor of the particle (0 for slab, 1 for cylinder and 2 
for sphere). The initial and boundary conditions are 

at t 0 Cp 0 (2) 

OG= 0 at r =0, br (3) 

at r =R~ C~ = [K]C (4) 

where C is the vector of dimension n denoting the conceim-afon in 
the reservoir and [K] is a square maNx of adsorption equilibrita-n 
constant. The mass balance around the whole reservoir is 

matrix, respectively. For a binary system, [A] and [Z] are: 

Then we can obtain for the binary system: 

~'1,2 :~[Dl i +D~-+d(D~I -D~): +4D~D~d 

1 Z.~ D, 1 
[Z] = = 

i D= 

1-1 - 
[Z] 1 _ 1 + ~  D~, 

(9) 

(10) 

(11) 

(12) 

6 =~,, -D2~ =-(s -D,~) (13) 

dC ~d<Cv> 
+ IJ----aT- =c~x(t)r-~c (5a) 2. Decoupl ing  of Diffusion Equat ion  

In order to deconple Eq. (1) we introduce vector u, such that 

_ (5 + 1 eR, ~ . 
<C~> = R---~-+~ J ~ r ~ a l  (50) 

where y is the vector of dimension n denoting the mole fi-action in 
the inlet stream and 0~ is the intensity parameter measuring the mag- 
nitude of the molar supply into the reservoir, [3 is the capacity par- 
ametei; and 2 is the overflow parametei; which are given as fol- 
low s: 

N 
c~=~; F-  v ,  ~'=flv 

X(t) in Eq. (5) is the forcing function, which defines the fonn of 
the periodic modulation of the inlet flow rate. We use the sinusoi- 
dal wave function: 

X(t) 1 +vsincot (6) 

The initial condition for Eq. (5) is 

att=0 C=0 (7) 

S O L U T I O N  OF THE M O D E L  E Q U A T I O N S  

C~=[Zlu 

Then Eq. (l) can be decoupled as 

(14) 

0u~ L 1 0 (~0u~'~ 
= kpg/ r  -~-r) (15) 

(k=l, 2, A, n) 

The initial and boundary conditions become 

at t=0  uk =0 (16) 

0u~= 0 at r =0, Or (17) 

at r =Rv u=[Z] '[K]C (18) 

3. Transfer Funct ion,  Q(s) 
Now the solufon in Laplace dcnmin of Eq. (14) can be ob- 

tained as: 

C-, =[ZIR (19) 

where 

The frequency response of the above model can be analytically 
obtained by using maWix manipulation. The key point is to diago- 
ualize the ditf~ivity maWix [D] in telms of the eigenvalues and eig- 
envectors. With the diagonalization of the diffusivity matrix, the n 
coupled diffusion equations [F_q. (1)] can be &coupled into n in- 
dividual equations, which canbe easily solved as inthe case of pure 
component systems by using the Laplace Wansform, since the mod- 
el is linear. 
1. Diagonal izat ion of Diffusivity Matr ix  

First we diagonalize the diffusivity matrix: 

[Z] '[DI[ZI=[A] (8) 

where [A] and [Z] are the eigenvalue mabix and the eigenvector 

_ . fXr, s) 
u = d i a g [ ~ l [ Z ]  ' [ K l C  (20) 

The function f(l, s) in Eq. (20) is given by: 

t ,4~d 

f~(r, s) = I0 (5 = 1 (21) 

From Eq. (20) the volumetric average for C~ can be obtained as: 
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<U;> =[T]C- 

where 

[T]=[Zldiag(F~(s))[Z]-' [K] 

The function F(s) is defined by: 

\ q s  foro=0 
G(s) R ~ s  

F~(s)=2 - -  - -  
R~ s I0(R~ s 

/R~,~coth(RvJ'~,)-1" 
F~(s)=3/" " ' ~ ~ ~ "  

(22) 

(23) 

(24a) 

for o = 1 (24b) 

for o = 2 (24c) 

Eq. (22) can be rearl-arged to obtain the Wansfer fimction for the 
particle: 

<Cp diag(Q~(s))C (25) 

where the element Q~ of the diagonal matrLx diag(Q~(s)) can be ob- 
tained as: 

The expression for C,/C~ will be given in the next sectic~t [see 
Eq. (32)]. As shom~ by Eq. (25), The transfer function Q~(s) relates 
the bulk concentration in the gas phase to the mean concenWation 

m the adscrbed phase. We note that when all the cross-tern1 ele- 
ments of matrices [D] are zero, Q~(s) reduces to the fimction Fk(s). 
Note that the function F~(s) is the Imrticle Wansfer function in case 
of pure component systems [Park et al., 1998b]. 
4. Overall Transfer Function for Adsorber, G(s) 

The Laplace tPansfolln of Eq. (5) is: 

s(C +[~<e~>) =c~Xy 5~ (27) 

Substituting Eq. (25) for < C p ,  we have 

s(1 +~)([I] + ~ d i a g ( Q ~ ( s ) ) ) C  =c~Xy (28) 

Thus, the overall tt-oztsfer function for the kth component can be 
obtained as 

g~ 1 
G~(s)---c~y~ - -  s[1 +u (29) 

To detellIline Cs./C ~ in Eq. (26), we rearrange Eq. (27) after sub- 
stitulkg Eq. (22) for < C p  as follows: 

s(1 +~)([I] + ~ [ T ] ) C  :c~Xy; s(1 +~)C :o~X[B]y (30) 

where square inatrLx [f3] is defined by 

[B]-I =[I] + ~ [ T ]  (31) 

Then we can obtain 

~. , / ~ 
~-=ZS,s.y , ZB~y, (32) 
k~ k d=l 2=1 

Subslitutmg Eq. (32) into Eq. (26), we obtain the exact expression 

Table 1. Transfer function Q(s) for binary systems 

Ql(S) =TH(s) +Tn(s) ylB~ +y~Bn TH(s) +Tn(s)R~l(s) 
ylBn +y~Bn 

~ +Y2Bn +T2~(s)~T~,(s)Rn(s) +T~(s) Q2(s) =T21(s) +y2B~2 

1 rf Dl~K~l~ . fDl~D~z 
Tll(s) I~12D21LtK11 @ T ) F I  (s)@ t T K I  1 DI~K21)F2(s) 1 

1 4 - - -  
6 ~ 

1 7/ DnK~2 N - fDI~D~I 

1 4 - - -  62 

1 j ()tT l 
1 4 - - -  62 

T22(s) I~12D21-(K22 D21U12~ q- fDl2 D21 q- ~ ) F l ( s  ) - 
14 a 2 

1 
Bn(s) = ~ ( 1  +T=(s)) (34g) Bn(s) = ~ ( - T n ( s ) )  

B~ , ( s )=~(T21(s ) )  (34i) B , l ( s ) = ~ ( 1  +Tn(s)) 

where 

BD(s) =1 +1~/sTn(s) + 1 ~7/---~T~2(s)+(l~)~T,~(s)T~(s)-(1 ~7/---~)~T,~(s)T2~(s) 

(34a) 

(34b) 

(34r 

(34d) 

(34e) 

(340 

(34h) 

(34j) 

(34k) 
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of Q+(s): 

Q+(s) = .__~ (T~,s __~ B,> ys(.__~B +y 0 (33) 

The transfer fimctions Qts) for binary systems are given in Table 1. 
The overall transfer fimction G(s) relates the forcing fimction to 

the gas pha,se concmb-ation m the reservoh~ The diffeaence betwee~ 
the semihatch adsorber (7"=0) and the conventional hatch adsorber 
can be Illustrated if the transfer function G(s) in Eq. (31a) is rear- 
tanged and put in a product of two functions as follows [Park et 
al., 1998a]: 

G~(s) G,(O �9 %~(s) (35) 

where Ge(s) and G~e, i s ) a re  defined by 

1 
G, Cs) = - (36) 

S 

1 
Gs:,~(s) - 1 +T/s +[3Q~(s) (37) 

The first fimction G~(s) is simply the transfer fimction of a physical 
filling reservoir, defining the relation between the inlet flow rate 
o~y~X and a hypothetical adsc~-bate concenb-ation in the reservoil- m 
the Laplace domain which would be obtained if no adsorbent and 
no outlet flow were present. The second function Ga, ~(s) defines in 
which way t i~  adsorbate is disbibuted between the gas phase and 
the outlet flow. When no outlet flow was present (i.e., when ?=0), 
the second function G~ e(s) reduces to the b-ansfer function of the 
conventional batch adsorber containing adsorbent [Park et al., 
1998b]. 

I,(R i/~a~]] 

' \  ~)~)~ (39b) 8"+: 2ImlRv  1 
For (~=2: 

R~ 2m coshtG 2m cosR~ 2co 

�9 = 3  R~ - -  coshR~ - -  cos R~ - -  R 20) 

(39c) 

Now the overall m-phase and out-of-phase characteristic func- 
tions for the adsorber are defined as: 

"qs,+ 13 Im{j~:Qk(s) + ~]} (40b) 

The overall characteristic fimctions for binary systems are given in 
Table 2. 

C H A R A C T E R I S T I C  F U N C T I O N S  O F  

F R E Q U E N C Y  R E S P O N S E  

The m-phase and out-of-phase characteristic fimctious for the 
element F~(s) can be defined as: 

6R,~ -i6s, k =lira F~(s) (38) 

S I M U L A T I O N  O F  T H E  F R E Q U E N C Y  R E S P O N S E  

The data of Chen and Yang [1992] for the surface diffusion of 
CO2 and C2H~ in 4A zeolite were used to simulate the characteris- 
tic functkxl of the fi-equency respanse. These data are also used in 
Sun et al. [1994] to simulate their model. Values of ~ e t e r s  of 
this system are summarized below: 

Then, we can obtain: 
For cy=0: 

�9 2m . 2m sinh R~ - -  +sin Rp - -  

(R 2~__m'~-cosl~R 2~__m'~ +cos(l~ 2~__m]-~ 
+~+)L < +~+) t. 41~+)-J 

s i n h ( R ~ ) - s i n C R , ~ )  
~Lk - -  x " i  +~k " 

For (~=1: 

o ~ 1 1 k qZ~]l  

a l 

(39a) 

eT= 2 (spherical microparticle); 

V 1041Tl 3 "V~ 3• 3 

R~=l.7• +m y~=0.33 

T=>8K EK1=[~ -01  
W0.083 o.o99] 

[D]=[1.4• 0 t4 1.1• 1~ 

L3.7• 10 -~7 1.2xlO -1+ 

Fig. 1 shows the in-phase and out-of-phase characteristic func- 
tions of the fi-equency response for the binary mixture of C Q  and 
C2H6 m 4A zeolite when the outlet stream of the adsc~-ber is closed 
(i.e., when T=0). On the whole, similar observations to those of Sun 
et al. [1994] are shown m tiffs figtn-e: (1) The faster diffusing com- 
ponent (CO2) is strongly influenced by the slower component. (2) 
The out-of-phase function of CO2 is negative near the resonance fie- 
quency of C2H6. (3) The in-phase function has an overshoot near 
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Table 2. Overall  characteristic functions of frequency response for binary systems 

F �9 

~l;�9 =T; 11 + (T~ 12Rs21 +T;�9 + ~  

31 R,.~7 =T~ 52 + (T~,2i R~>i2 -T;>2i Rs, i2) 

~A =T:,~ + (TR,~I Rs, I~ +Tsjl RR, I~) + 
%, 

T .... 1 _~_DL2D21[(Kll [ ~ ) 8 R I 1  @ ( ~ K l l  Dl~K21)SRI2] 
6 5 

1 6 ) ;'1 6 )s>2~ Ts>ii D~ 2 D21 [(Kll + D12N21"~8 + ( ~ K l l  D12-"N21 '~8 "~ 
1 + - -  

6 ~ 

1 4 - -  
65 

1 
T )  ,,1 t 6 ~ 1~ 6 ) " ~ /  

T .... D'~ 2 D21 [(K12 -I- D12K22 ~8 -I- CD12D21K D1Z22 ~8 "] 
l + - -  

m2iK-u3tq ~ +(D12D21K +m21Ku3tq ~ ] 
TRal - -  8 )~,2 / 82 51 8 )~,11 

1 4 - -  

D~IKu~ 8 +/DI~D~I +D~,K,'~ 8 n 
T , , 2 1 - - -  6 ),,2 t T K 2 I  TJ,,lJ 

l + - -  

D2ZI2"I8 +(Di2D2i K +D21KI2"I8 -] 
T .... - -  ~ )~,~ t 8~ ~ ~ )~ ,1 ]  

1 4 - -  

D21Kl2~tq ~ +(DI:D:I K +D21Kl2~tq ~ -~ 
T,,22 - -  -g ) , , 5  t. 8~ 2~ 8 ) ' , 1 /  

1 + - -  

8 2 

8 ~ 

i ~  D~l[(K~l - -  
6 ~ 

D~2D21ICK22---  
65 

Dl-12D21[ (K22 - -  
6 ~ 

[YI 
RR, I 2 -- 

t [y~ +[~(y~T . . . .  ylT~a~)] ~ +1~ ~T . . . .  Y~T,a~ + 

13[y2 +13(y2T .... -y~T~,2,)](y~Ts>22-y2Ts>~ + ~-~)-13[y~ +[3(y~T~>~2-y~T~>,2)l(y~Tz>~-y,T;,2,+ ~-o~) 
R-J, 12 - 

[Y2+Ig(y2TR>ii y, TR>2,)lyi+l~(yiT~a2 y~T~,n)]+l~2(y~T,,,i Y,T,,2i+~am)(Y,T,>22 y2T,>i2+~m ) 
R-R,21 

[Y~+I3(Y~TR,22 y2TR, n)12+IY(y~TL22 Y~T,,n+~-~a J 

[~[Yi+I~(yiTR>22 Y2TR>i2)](Y2Ts yiTs ) [~[Y~+I~(Y~TR,,i y, TRai)](y, Ts,22 y2Ts>i2+~Y-am) 
Ri>21 

[Y,+I3(Y, TR,22 y2TR, n)12+IY(y~Ts Y~Ts, n+~2toJ 

(41a) 

(41b) 

(4]c) 

(41d) 

(41e) 

(4]0 

(41g) 

(41h) 

(41i) 

(4 lj ) 

(41k) 

(41/) 

(41m) 

(41n) 

(41o) 

(41p) 

the crossover frequency between the out-of-phase functions of two 
components. 

Fig. 2 shows the frequency response of the semibatch adsorber 
(7=0) when the cross-terms of ditS~sivity and equilibrkun constant 
are zero (DI2 D21 0 and KI2 K21 0). In this case, the behaviour 
of the frequency response of each component is independent of each 
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other. The N-phase fimction of each component does not exceed 
unity and the out-of-function is always positive. 

The N-phase and out-of-phase fim~ons for the colNnuous-flow 
adsorber are shown in Figs. 3 and 4, respectively. As shown in Fig. 
3, the value of rise frequency of the in-phase funcEon, at wkich the 
m-phase function starts to rise above trtity, is largely affected by 
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i~. 1.0 

0 0  

�9 o.s OUl'-Of- , p h a ~  

1~ 1~ 1;  1~ 1;' 1; 10' 
Frequency (rad/$) 

Fig. 1. Normalized in-phase and out-of-phase functions of f requ-  
ency response for the reference case [CO: (solid), C:H6 
(short dash), Total (long dash)]. 

1,0 

-~ 0.5  

z 

CO~ v 
0.0 . . . .  

10-4 10-3 lO-Z 104 100 10 ~ 
Frequency (tad/s) 

Fig. 4. Normalized out-of-phase functions of frequency response 
[7/13=0.0001 (solid line), ~/[~=0.001 (dash)l. 

1.0 

0.8 \ "-- r \ in-phase" \ / ._o \ \ ~  

~ 0 , 6  

! ,,".::,,. 
" o.~ / "...// \~.~ I 

/ out-of~phase ~ ~ ' ~ .  I 

o.o . -" ' -  T - - - : 7  . . - ' > - - - - s  
10 ~ 10-4 10`~ 10 e 10-1 10 0 I01 

Frequency (red/s) 

Fig. 2. Normalized in-phase and out-of-phase functions of frequ- 
ency response for I~=Dm=I~=K~I=O [CO~ (solid), C2I~ 
(short dash), Total (long dash)]. 

4.0 

3.5 

~ 2.5 

~ 2.0 

~.e 

0.5 C~H6 
0,0 �9 . 

10 "z 10" ~ 10 "s 10 4 l IP  10" z 10 "~ 
Frequency (red/s) 

Fig. 3. Normal ized in-phase functions of frequency response ['It/ 
~=0.0001 (solid), ~/[~=0.001 (dash)]. 

the overflow parameter. However, the decreasing part of this func- 
tion seems to be unaffected by the overflow parameter. As we can 
see m Fig. 4, the out-of-pha,se function is much more sensitive to 
the overflow parameter than the in-pha,se function. The out-of-phase 
function for CO2 shows a maximum and minimum in Fig. 4. At 
the minmltal point of the out-of@lase function, the rate of in- 
crease in the diffusion term equals the rate of decrease in the over- 
flow telm. As the value of overflow pamlneter y increases, the de- 

viation between minimum and maximum points of the out-of-phase 
functions becomes smaller and smaller, then the extrelna theln- 
selves vanish at some higher value ofy. Hence, it might be impor- 
tant to keep the overflow parameter at lower values when deter- 
mining adsorption parameters using the minimum and maximum 
properties (e.g., using deviation of concenmations or frequencies be- 
tween minimum and maxmltal points) of the out-of-phase func- 
tions [Park et al., 1998b]. On the other hand, the out-of-phase 
function for C2Hs for the parameter values of Fig. 4 shows no ex- 
bema at all. Tt~ is because the overflow process rather thazl the dif- 
fusion process in this case limits the out-of-phase fimction of C2t-~. 

Fig. 5 shows the out-of-phase function of the continuous-flow 
adsorber when the cross-terms of diffusivity and equilibrium con- 
stant are zero (D12=D21=0 and K,2=K21=0). Note that the in-phase 
function for t t~ case is not affected by the overflow tXil'anleter (not 
shown in the figure). Comparing the curves in Fig. 5 with those in 
Fig. 4, we see that the minimum points of the out-of-phase fimc- 
tions of CO2 and total concentpations appear at slightly higher fre- 
quencies in case of non-zero cross-term ditSasivities (i.e., in case of 
Fig. 4) when the overflow is relatively small. 

Fig. 6 shows the out-of-phase fitnction for the continuous-flow 
adsorber when the cross-terms of dit51sivity are zero. The in-phase 
function in t t~ case is not affected by the overflow parameter (not 
shown in the figure). Note that the same result was obtained in case 

1.0 

~ \ \  

7 

0.0 002 C 2 H ~ ~ ~  

104 10"3 10"2 10-1 10 o 101 
Frequency (red/s) 

Fig. 5. Normalized out-of-phase functions of frequency response 
for D12=D21=K12=I~l=O [7/[3=0.0001 (solid), 7/[~=0.001 
({lash)]. 
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1.0 

otal H 

7 

0,0 
10 .4 10  3 10 "2 10 "1 10 0 10' 

Frequency (rad/s) 

Fig. 6. Normalized out-of-phase functions of frequency response 
for D~ =D2~=O [~/[3=0.0001 (solid), ~/[3=0.001 (dash)]. 

ofFig. 5 (i.e.,Dn D21 0andKn K21 0). Hencewe eanconclude 
that the in-phase ffuaction of the colNnuous-flow adsorber is identi- 
cal with tixat function of tile senlibatdl adsorber when tile ditSasion 
interference is neglected (i.e., Dn=D2~=0). 

Other effects of tile diffusion interference can be understood by 
comparing Fig. 6 (Dn D21 0) with Fig. 4. Due to tile diffiasion in- 
terference (in case of Fig. 4), the minimum point of the out-of-phase 
function appears at much lower frequency (for CO2 and total con- 
ceim-ations), and tile deviation between tile maxinluln and tile min- 
imum becomes much larger. 

Effects of equilibrium interference can be understood by coin- 
lmdng Fig. 6 (Dn=D2,=0) with Fig. 5 (Dn=D2~=0 and Kn=K2,=0). 
Due to tile equilibrit~n interference (in case Fig. 6), tile minimum 
point of tile out-of-phase function appears at nmch higher fre- 
quency (for CO2 and total concerltralions), and the deviation be- 
tween tile maximtal and tile minimum becomes much smaUer. 

Due to these compensating effects of diffusion and equilibrium 
interferences, tile minilntal point,s of tile curves in Fig. 5 appear 
at comparable frequencies with those in Fig. 4, and tile deviations 
between the maximum and the minimum in Fig. 5 are also compa- 
rable witi1 those in Fig. 4. 

Conb-azy to tile behavior of tile out-of-pt~se function of tile faster 
diffusing component, the out-of-ph~e function of the slower dif- 
fusing component shows no extrema at all for tile given values of 
7 in this work. 

C ONCLUSION 

In this paper, we prese~lted a tileolvtical analysis of tile fi-equency 
response of a continuous-flow adsorber with tile periodic modula- 
tion of tile in[et flow-rate to ineasure lnulticomponent diffiasion ki- 
netics in porous media. Wtlen tile value of tile overflow parameter 
is zero, the frequency response of the continuous-flow adsorber ob- 
tained in this study reduces to those of semikatdl adsorbers. Mica-o- 
pore d i f~ ion  kinetics is assumed for tile intmparticle mass ~arlS- 
fer mecbmism. Three different shapes of micropmicle are consid- 
ered: slab, cylinder, and sphere. 

For the oonfinuous-flow adsorber, simulation results for the bi- 
nary system show that the frequency response of the faster diffusing 
component is strolgly influenced by tile slower component. Tile 
out-of-phase characteristic fimction of the frequency response of the 

fa~;ter diffusing colntxxleiIt shows maximtal and mmimtal points. 
Due to the diffusion interference, the minimum point of the out- 

of-ptxase function appears at much lower frequency, and file devia- 
tion between tile maximum and tile minilnum becomes much lar- 
ger. Due to the equilibrium interference, the minimum point of the 
out-of-pt~se function appears much higher, and tile deviations be- 
tween the maximum and the minimum become much smaller�9 

Tile in-phase charactelistic function of file frequency response 
of tile continuous-flow adsolber is not affected by tile overflow par- 
ameter when the diffusion interference is neglected 

NOMENCLATURE 

C, C~ 

< c p  
D 
F(~) 
c4s) 
K 
N 
q 
Q(s) 
r 
a, 
S 
t 
T(s) 
V,V~ 
X(t) 
Y 

: concentrations in file reservoir and micropores, respec- 
lively [mol/m 3] 

�9 volumetric average of Cs [IIlol/ln 3] 
�9 effective diffusivity in micropores [m2/s] 
: transfer fimction, defined by Eq. (24) 
: overall transfer function, definedby Eq. (29) 
: adsorption equilibrium constant 
: inlet molar flow rate to reservoir [inol/s] 
: volumetric overflow rate from reservoir [m3/s] 
: transfer function for the particle, defined by Eq. (26) 
: coordinate variable ofmicaoparticle [ln] 
: equivalent radius ofnlicaoparticle [111] 
: Laplace variable [I/s] 
: time variable [s] 
: transfer fimction, defined by Eq. (23) 
�9 volumes of reservoir and micropores, respectively [II13] 
: noi~lhnensional forcing function 
: molar fraction of  inlet stream to reservoir 

Greek 

F 
5' 

V 
~J 

0) 

Letters 
: intensity parameter llleasuring tiie magnitude of file molar 

supply into tiie reservoiz; N/V 
: capacity parameter, VJV 
: overflow parameter, q/V 
�9 in-phase and out-of-phase characteristic function for the 

transfer function F(s), defined by Eq. (39) 
: in-phase and out-of-phase characteristic function of fi-e- 

quency response, defined by Eq. (40) 
: anlplitude of modulation of inlet molar flow rate 
: shape factor &particle (0 for slab, 1 for cylinder and 2 for 

sphere) 
: angular frequency of  the pellurbation in flow rate [rad/s] 

Mathematical Function 
I~(z) :modifiedBesselfunctionoftile first kind of  order n 

Superscript 
- : variables in tile Laplace domain 

Subscript 
i, j, k : component index 

Matrix and Vector Notation 
Boldface letters: vectors of dimension n 
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[ ] : square matrix of dimension n•  
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