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Abstract—In this paper, we present a theoretical analysis of the frequency response of a continuous-flow adsorber
with periodic modulation of the inlet flow-rate to measure multicomponent diffusion kinetics in porous media. Micro-
pore diffusion kinetics is assumed for the intraparticle mass transfer mechanism and three different shapes of micro-
particle are considered: slab, cylinder, and sphere. Simulation results for a binary system show that the frequency re-
sponse of the faster diffusing component is strongly influenced by the slower component. The out-of-phase characteris-
tic function of the frequency response of the faster diffusing component shows maximum and minimum peints. The
deviation between these maximum and minimum values becomes smaller when the cross-terms of diffusivity go to
zero, while the deviation becomes larger when the cross-terms of the adsorption equilibrium constant go to zero. Con-
trary to the behaviour of the out-of-phase function of the faster diffusing component, the out-of-phase function of the
slower diffusing component shows no extrema at all. The in-phase characteristic finction of the frequency response of
the continuous-flow adsorber is not affected by the overflow parameter.
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INTRODUCTION

Because of its importance in the study of catalytic or noncata-
Iytic gas-solid reactions, the problem of gaseous diffusion kinetics
in porous media has attracted much attention in the literature. As a
result, a variety of methods for investigation of the kinetics have
been presented. The mass transport phenomena 1 porous media
nclude contributions from bulk, Knudsen and pore diffusion, and
viscous flow, which are further complicated by interactions with
adsorption and surface diffusion on the internal surface of the por-
ous media. Tn order to determine reliably the contribution of each
transport mechamsm and the relevant parameters, some experimen-
tal techniques are needed. To achieve this goal, one of the follow-
ing techniques can be used: gas chromatography, diffusion cell,
gravimetric method using a microbalance, zero length column, and
differential adsorption bed. The advantages and disadvantages of
these techmques are reported in the literature [Park et al, 1996].

Recently, a frequency response (FR) method was developed, for
the investigation of the diffusion and adsorption kinetics in porous
media [Jordi and Do, 1992, 1993, 1994, Park et al., 1998a, b; Pet-
kovska and Do, 1998; Sun et al., 1993, 1994; Sun and Bourdin,
1993; Sun and Do, 1995, 1996; Yasuda and Saecki, 1978; Yasuda,
1982; Yasuda and Sugawara, 1984]. The potential of this method
was extended to systems with chemical reactions [Yasuda, 1989,
1993; Yasuda et al., 1995]. In the FR method the frequency re-
sponse is usually investigated in a batch system in which the gas
pressure or concentration is changed by a forced periodic modula-
tion of the reservorr volume, although FR in contimuous flow sys-
tems with periodic modulation of the inlet gas concentration [Ngai
and Gomes, 1996] or the inlet molar flow rate [Park et al., 19984,
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b]. The main advantages of FR using modulation of the nlet flow-
rate over the conventional FR using modulation of the reservorr vol-
ume are the following [Park etal., 1998a, b]:

- High frequencies of the inlet molar flow-rate modulations are
easy to obtain in practice, contrary to volume modulations.
- Large relative amplitudes of the inlet flow-rate can be used.

The analysis of the multicomponent diffusion in a porous media
requires knowledge of both the main-terms and cross-terms of dif-
fusivity. However, our understanding of multicomponent diffusion
18 very lmnited [Qureshn and Wer, 1990; Markovska et al., 1999],
and a very limited number of papers for the FR of multicomponent
diffision are available [Yasuda and Matsumoto, 1989, Sun et al.,
1994].

The objective of this paper is to present a theoretical analysis of
the frequency response of a contmuous-flow adsorber with peri-
odic modulation of the inlet flow-rate for the multicomponent dif-
fusion in porous media. Micropore diffusion kinetics i3 assumed
for the mtraparticle mass transfer mechamsm and three different
shapes of microparticle are considered: slab, cylinder, and sphere.

PROBLEM FORMATION AND
MATHEMATICAL MODEL

Congider a continuous-stirred gas reservoir, in which a known
amount of porous particles is loaded The particles are assumed to
be of wrnform size. At time t=0, a stream of an 1deal gas mixture of
n components is introcuced to the reservoir with periodic flow rate
and at the same time a flowing stream out of the reservoir is started.
We assume that the system is isothermal, and that the diffusion par-
ameters are constant.

The mass balance descnibmyg the concentration distribution nside
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a porous particle for the micropore diffusion kinetics [Park et al.,
19984] 1s:

(%) m

where C, is a vector of dimension n dencting the concentration in
the micropore within particles and [D] 18 a square matrix of dif-
fusivities in which the off-diagonal terms are generally non-zero; r
is the coordinate variable of microparticles within a particle, and G
1 a geometric factor of the particle (0 for slab, 1 for cylinder and 2
for sphere). The initial and boundary conditions are

att=0  C,=0 ()
_ 9C, _

atr=0, % =0 3

atr=R, C,=[K]C C)]

where C 1s the vector of dimension n denoting the concentration in
the reservoir and [K] is a scquare matrix of adsorption equilibrium
constant. The mass balance around the whole reservoir is

dC | d<C,>

T BT eX®my —1C (52)
_Ctlw, o
<C#>_Ra+1j C dI (Sb)

B
where y 18 the vector of dimension »# denoting the mole fraction in
the inlet stream and o is the infensity parameter measuring the mag-
nitude of the molar supply into the reservoir, [3 is the capacity par-
ameter, and ¥ 18 the overflow parameter, which are given as fol-
lows:

N gV

oc= p= !

v Y= v

X(t) m Eq. (5) 13 the foreing function, which defmes the form of
the periodic modulation of the inlet flow rate. We use the sinusoi-
dal wave function:

X(t=1+vsinwt (6)
The initial condition for Eq. (5) is
att=0 Cc=0 7

SOLUTION OF THE MODEL EQUATIONS

The frequency response of the above madel can be analytically
obtained by using matrix manipulation. The key poirt is to diago-
nalize the diffusivity matrix [D] in terms of the eigenvalues and eig-
envectors. With the diagonalization of the diffusivity matrix, the n
coupled diffusion equations [Eq. (1)] can be decoupled into n m-
dividual equations, which can be easily solved as in the case of pure
component systems by using the Laplace transform, since the mod-
el 1s lmear.

1. Diagonalization of Diffusivity Matrix

Fist we diagonalize the diffusivity matrix:

[Z]'[DIIZ]=[A] (8
where [A] and [Z] are the eigenvalue matrix and the eigenvector

matrix, respectively. For a binary system, [A] and [Z] are:

[A]= {”} [z]{ Z} ©)
OAQ Z‘21Z22

Then we can obtain for the binary system:

1
ll 2 :E[Dn +D22J—F'J(D11 _D22)2 +4D12D21] (10)
1 Dy, 1 _D12
zis BP0 an
AL 1 = 1
A Dy o
| Dy
2 ——— ® 12
1+D12D21 —Dy )
§ |8
6:}'1_[)22 :_(7\7 _Dn) (13)

2. Decoupling of Diffusion Equation
In order to decouple Eq. (1) we introduce vector u, such that

C,~[Z]u (14)
Then Eq. (1) can be decoupled as

Sl 5 0
(k=1,2, A,m
The initial and boundary conditions become
att=0 u =0 {16)
atr=0, % =0 {17
atr=R, u=[Z]"'[K]C (18)

3. Transfer Function, Q(s)
Now the solution m Laplace domam of Eqg. (14) can be ob-
tained as:

C,=[Z]u (19)
where

f.(r,8) E—
dlag[f(Rm ):[[Z] [KIC (20)

The function f(r, ) m Eq. (20) 18 given by:

| i) el
COS (I‘J; (o]

f(r,8) = Iu(r f) o=l 1)

1. S -
1rsmh(r &) fog =2

From Eq. (20) the volumetric average for C, can be obtained as:
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m the adsorbed phase. We note that when all the cross-term ele-
ments of matrices [D] are zero, Q(s) reduces to the function F,(s).
Note that the fimction Fi(s) 1s the particle transfer fimetion m case
of pure component systems [Park et al., 1998b].
4. Overall Transfer Function for Adsorber, G(s)

The Laplace transform of Eq. (5) 1s:

$(C +p<C,>) =axXy —C 27
Substituting Eq. (25) for <C,>, we have
Y B "o

s(1+ 1)1+ dioe( Qo T -y (28)

Thus, the overall transfer function for the kth component can be
obtammed as

1
s[1+y/s +pQu(s)]

To determine 61./6;( m Eq. (26), we rearrange Eq. (27) after sub-

C,
Gy(s)=
oy, X

(29)
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<C,>=[TIC (22)
where
[T]=[Z]diag(F(NZT K] (23)
The function F(s) is defined by:
anh(R# J;)
F.(s)= for 5 =0 {24a)
ok
1 L(R‘” ;)
F.(s)=2 = | foro= (24b)
5 s
B
5 sY_
Rchoth(Ru&) 1
Fu(s)=3 5 for =2 (24c)
(&)
# 7\%

Eq. (22) can be rearranged to obtain the transfer function for the
particle:

<C,> =diag(Q(s))C (25)
where the element Q, of the diagonal matrix diag(Q,(s)) can be ob-

tamned as:
Q®-2T, @

(26)

The expression for C,/C, will be given i the next section [see
Eq. (32)]. As shown by Eq. (25), The transfer function Q,(s) relates
the bulk concentration in the gas phase to the mean concentration

Table 1. Transfer function Q(s) for binary systems

stituting Eq. (22) for <C,> as follows:

s(l +3Sf)([1] b Pv /S[T])E —ay: 5(1 +§)E —oX[Bly  (30)
where square matrix [B] i defined by
(B 1]+ & (31)
Then we can obtain
—XBUY/XB;?Y, (32

kJ‘

Substituting Eq. (32) mto Eq. (26), we obtam the exact expression

QS =Tl + T L LT () 4 Tl ORu) (34a)
Q) TR R T TR 1) (34)
— 1 M D12K21 D12D21 7D12K21
T“(S)HDQDL(K“* 52 ) (2K, - PR 349)
62
— 1 [ D12K22 D12D21 D12K22
Tul)= HDMDL(K”+ S AN e o SO G
62
— 1 [ _D21K11 D12D21 D21K11
O (Ko =225 o +( P2, 22 9 (349)
62
— 1 [ _D21K12 D12 2l D21K12
Tzz(s)HDuDz_(Ku O e s (34D
62
Bi(s)= B()(l +Tu(s)) (34g) B.(s)= B( )( T,(s)) (34h)
By (s) = B()( Tau(8)) (341) Bu(s)= B()(1+T11(S)) (34))
where
b B by (B Y
B6) =1 2T O ) (o T (o o) (340
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of Qyfs)
Qus) =Z[Tsz/ZB;gyJ 33)

The transfer functions Q&) for binary systems are given in Table 1.

The overall transfer function G(s) relates the forcing function to
the gas phase concentration m the reservoir. The difference between
the semibatch adsorber (y=0) and the conventional batch adsorber
can be illustrated if the transfer function G(s) in Eq. (31a) is rear-
ranged end put m a product of two functions as follows [Park et
al., 1998a]:

Gs)=Gils) - Gy, (3) (35)
where Gy(s) and G (s) are defined by

Gi9)=1 (36)

1
1+ +BQu(s)

The first function G{s) is simply the transfer function of a physical
filling reservoir, defining the relation between the inlet flow rate
oy, X and a hypothetical adsorbate concentration in the reservoir in
the Laplace domain which would be obtained if no adsorbent and
no outlet flow were present. The second function G ,(s) defines in
which way this adsorbate 15 distributed between the gas phase and
the cutlet flow. When no outlet flow was present (i.e., when y=0),
the second function G (s) reduces to the transfer function of the
conventional batch adsorber containing adsorbent [Park et al.,
1998b].

GHJ((S) = (37)

CHARACTERISTIC FUNCTIONS OF
FREQUENCY RESPONSE

The in-phase and out-of-phase characteristic functions for the
element F,(s) can be defined as:

Oz —18;, =limF,(s) (38)

Then, we can obtain:

_ | smh(Ru J}: )+51H(Ru 4/2170) )
(R oo es(r 2]
smh( J; ) sin(Ru @)

8,.= 2 (3%a)
(Ru @)}:cosh(fg @) +cos(Ru F;ﬂ
For g=1:
IL[R 9)
1 ( N A,
8., =2Re -
i ®
R, l_;c ID(RH fk)

1(R /19)
-1 ‘( "W,
R FEI(R /19)
” X, o| B *

8,,=2Im (39b)

For g=2:

| BB
(RuJ: cosh &f —cos Ru\/:jl

e
e e B )

{39¢)

Now the overall in-phase and out-of-phase characteristic func-
tions for the adsorber are defined as:

MNes _ ; i

B Re{zl%r!n Q.(s) +BS]} (40a)
Ui __ ; i

B Im{}irga[Qk(s) + BS}} {410b)

The overall characteristic functions for binary systems are given in
Table 2.

SIMULATION OF THE FREQUENCY RESPONSE

The data of Chen and Yang [1992] for the surface diffusion of
CO, and C,H, m 4A zeolite were used to simulate the characteris-
tic function of the frequency response. These data are also used m
Sun et al. [1994] to simulate their model. Values of parameters of
this system are summarized below:

0=2 (spherical microparticle),

V=10"m’  V,=3x107 oy
R=17x10"m =033

To208 K [K]=| 038 013
—0.083 0.099

[D]= l4x10™ 1.1x107"
371077 1.2%x107°

Fig. 1 shows the in-phase and out-of-phase characteristic func-
tions of the frequency resporse for the binary mixture of CO, and
C,H; m 4A zeolite when the outlet streamn of the adsarber 1s closed
(i.e., when y=0). On the whole, similar observations to those of Sun
et al. [1994] are shown 1 this figure: (1) The faster diffusing com-
ponent (CO,) is strongly influenced by the slower component. (2)
The out-of-phase function of CO, 1s negative near the resonance fre-
quency of CH,. (3) The m-phase fimction has en overshoot neer

Korean J. Chem. Eng.(Vol. 17, No. 6)
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Table 2. Overall characteristic functions of frequency response for binary systems

% Tan+ (TainRaa — TR (41a)
T =T+ (TaiRea + TR+ (41b)
%*Tszr(TRanz —T xRz (41c)
% Tyt (T Ry +TraiRese) + g (41d)
Tay = Dl D L(Ku+D12K21)6R1+(D12D21K %)6&2:[ (41e)
| +2u2n
D K. DD DK
T 5 5 [P o o (P, - P52 (10
Dby
TRylz D D (Ku""Du 22)61?,1+(%K12_D126K22)6R,2i[ (41g)
DDy,
DK D,D DK
Tp- DID [k =52 o (P22 252 | (410
] + 2z
&
1 D,K DD D, K .
Ten = DD [(Kn* 216 lljén,fr(%l{n + 216 11)6;2,1:[ (411)
] +=22a
&
TMI — ]:)1 D [(KEI*DEISK”)SM +(Dlé]2:)21K21+D216K11)61,1} (41J)
] =zt
62
Ths = Dl 5 [(KH—DEISKIEJSR‘E-&-(%KH+D216K12)6R‘1i[ (41k)
|+
&
1 D, K DD D, K
T =g (Ko 25 o (222K 20, | (1)
]+
&
[Y1 +B(Y1TR,22 7YZTR,12)IY2 +B(Y2TR,11 7Y1TR,21)] +BE(Y1T1,22 7YZT1,12 +EFCLD)( 2T1,11 7Y1T1,21 +BFCLD)
R..= P {(41m)
[Y2 +B(Y2TR,11 7Y1TR,21)]2 +Bz( 2T1,11 7Y1T1,21 +BFCLD)
Bly: +B(y:Tan —v: REI)](YI 132 Y2T112+B ) Bly: +B(¥iTan—¥s RIE)](YZ L Y1T121+BY)
Rip= Z (41n)
[¥: *B(¥:Trn _leR,21)]2 +BE(Y2T1,11 Tz +Blcl))
V2 T T asy ¥ Tra) by, TB(¥i To — ¥ Trin)l +BE(Y2T1,11 T +B’CLD)( T Tt B’CLD)
Rpa = P (410)
(v, TB(vi Trn 7Y2TR,12)]2 +BE(Y1 T wTt B’CLD)
Bly; +B(y.Tan 7Y2TR,12)](Y2T1,11 VT +BJ{_D) “Bly, +B(¥:Tar— YITRJI)](YITLEE —v;Trt B’CLD)
Rixn= (41}))

2
Vi TB (¥ Tra 7Y2TR,12)]2 +BE(Y1 T —wTist E’CLD)

the crossover frequency between the out-of-phase functions of two
components.

Fig. 2 shows the frequency response of the semibatch adsorber
(y=0) when the cross-terms of diffusivity and equilibrium constant
are zero (D),=D,=0 and K,,=K,,=0). In this case, the behaviour
of the frequency response of each component is independent of each

November, 2000

other. The in-phase function of each component does not exceed
unity and the out-of-function is always positive.

The in-phase and out-of-phase functions for the continuous-flow
adsorber are shown in Figs. 3 and 4, respectively. As shown in Fig.
3, the value of rise frequency of the m-phase function, at wiich the
in-phase function starts to rise above unity, is largely affected by
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20

Normalized Functions

out-of-phase . .
104 10 107 107 o e 10
Frequency (rad/s)

Fig. 1. Normalized in-phase and out-of-phase functions of frequ-
ency response for the reference case [CO; (solid), C;H;
(short dash), Total (long dash)].
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Fig. 2. Normalized in-phase and out-of-phase functions of frequ-
ency response for Dy,=D;=K;,=K,;=0 [CO, (solid), C;H;
(short dash), Total (long dash)].
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Fig. 3. Normalized in-phase functions of frequency response [y
B=0.0001 (solid), 7/B=0.001 (dash)].

the overflow parameter. However, the decreasing part of this func-
tion seems to be unaffected by the overflow parameter. As we can
see n Fig. 4, the out-of-phase function 13 much more sensitive to
the overflow perameter than the m-phase function. The out-of-phase
function for CO, shows a maximum and mmimum m Fig. 4. At
the mmmum poitt of the out-of-phase function, the rate of m-
crease in the diffusion term equals the rate of decrease in the over-
flow term. As the value of overflow parameter ¥ mcreases, the de-

1.0

0.5 1

Normalized Functions

0.0 . - .
104 103 102 101 100 101
Frequency (rad/s)

Fig. 4. Normalized out-of-phase functions of frequency response
[¥B=0.0001 (solid line), ¥[§=0.001 (dash)].

viation between minimum and maximum points of the out-of-phase
functions becomes smaller and smaller, then the extrema them-
selves vamish at some higher value of . Hence, it might be impor-
tant to keep the overflow parameter at lower values when deter-
mining adsorption parameters using the minimum and maximum
properties (e.g., using deviation of concentrations or frequencies be-
tween mimmum and mexmmum poits) of the out-of-phase func-
tions [Park et al., 1998b]. On the other hand, the out-of-phase
function for C;H; for the parameter values of Fig. 4 shows no ex-
trema at all. This 13 because the overflow process rather than the dif-
fusion process in this case limits the out-of-phase function of C;H,.

Fig. 5 shows the out-of-phase function of the contimious-flow
adsorber when the cross-terms of diffusivity and equilibrium con-
stant are zero (D;;=Dy;=0 and K,,=K,;=0). Note that the in-phase
function for this case 18 not affected by the overflow parameter (not
shown in the figure). Comparing the curves in Fig. 5 with those in
Fig. 4, we see that the minimum points of the out-of-phase func-
tions of CO, and total concentrations appear at slightly higher fre-
quencies in case of non-zero cross-term diffusivities (Le., in case of
Fig. 4) when the overflow 1s relatively small.

Fig. 6 shows the out-of-phase function for the continuous-flow
adsorber when the cross-terms of diffusivity are zero. The in-phase
function m this case 1s not affected by the overflow parameter (not
shown in the figure). Note that the same result was obtained in case

1.0

0.5

Normalized Functions

0.0

104 102 102 10 100 10!
Frequency (rad/s)
Fig. 5. Normalized out-of-phase functions of frequency response
for D,,=D,=K;,=K;,=0 [yB=0.0001 (solid), y/=0.001
(dash)].

Korean J. Chem. Eng.(Vol. 17, No. 6)



710 L-8. Park et al.

0.5

Normalized Functions

0.0 . .
10 103 102 10" 10° 10
Frequency (rad/s)
Fig. 6. Normalized out-of-phase functions of frequency response
for D,,=D,=0 [/B=0.0001 (solid), ¥B=0.001 (dash)].

of Fig. 5 (1e., D};=D,,=0 and K,,=K;,=0). Hence we can conclude
that the in-phase function of the contimious-flow adsorber is identi-
cal with that function of the semibatch adsorber when the diffusion
interference is neglected (i.e., D;=D;;=0).

Other effects of the diffusion mterference can be understood by
comparing Fig. 6 (D,,=Dy,=0) with Fig. 4. Due to the diffusion -
terference (in case of Fig. 4), the minimum peint of the cut-of-phase
function appears at much lower frequency (for CO, and total con-
centrations), and the deviation between the masximum and the mm-
imum becomes much larger.

Effects of equilibruun mterference can be understood by com-
paring Fig. 6 (D,=D,,=0) with Fig. 5 (D,;=D4=0 and K,,=K;,=0).
Due to the equilibnum interference (m case Fig. 6), the minmum
pomt of the out-of-phase function appears at much igher fre-
quency (for CO, and total concentrations), and the deviation be-
tween the maximum and the minimum becomes much smaller.

Due to these compensating effects of diffusion and equilibrimm
mterferences, the mimmum points of the curves 1 Fig. 5 appear
at comparable frequencies with those m Fig. 4, and the deviations
between the maximum and the minimum in Fig. 5 are also compa-
rable with those in Fig. 4.

Contrary to the behavior of the out-of-phase fimction of the faster
diffusing component, the out-of-phase function of the slower dif-
fusing component shows no extrema at all for the given values of
¥ in this work.

CONCLUSION

In this paper, we presented a theoretical analysis of the frequency
response of a contimious-flow adsorber with the periodic modula-
tion of the mlet flow-rate to measure multicomponent diffusion ka-
netics n porous media. When the value of the overflow parameter
is zero, the frequency response of the continuous-flow adsorber ob-
tamed m this study reduces to those of semibatch adsorbers. Micro-
pore diffusion kimetics 15 assumed for the mtraparticle mass trans-
fer mechanism. Three different shapes of microparticle are consid-
ered: slab, cylinder, and sphere.

For the continuous-flow adsorber, simulation results for the bi-
nary system show that the frequency response of the faster diffusing
component 1 strongly mfluenced by the slower component. The
out-of-phase characteristic function of the frequency response of the
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faster diffusing component shows meximum and mimrmum pomts.

Due to the diffusion interference, the minimum point of the out-
of-phase function appears at much lower frequency, and the devia-
tion between the maxmmum and the minimum becomes much lar-
ger. Due to the equilibrium interference, the minimum point of the
out-of-phase fimction appears much higher, and the deviations be-
tween the maximum and the minimum become much smaller.

The m-phese characteristic function of the frequency response
of the contimuous-flow adsorber 15 not affected by the overflow par-
ameter when the diffusion interference is neglected

NOMENCLATURE

C, C, : concentrations in the reservolr and micropores, respec-
tively [mol/m’]

<C;> :volumetric average of C, [mol/m’]

D - effective diffusivity in micropores [m®/s]

F(s) :transfer function, defined by Eq. (24)

G(s) : overall transfer function, defined by Eq. (29)

K : adsorption equilibrium constant

N - mlet molar flow rate to reservoir [mol/s]

q : volumetric overflow rate from reservoir [m’/s]

Q(s) : transfer function for the particle, defined by Eq. (26)

T : coordinate vanable of microparticle [m]

R, : equivalent radius of microparticle [m]
8 : Laplace variable [1/3]
t : time variable [s]

T(s) : transfer function, defined by Eq. (23)
V.V, :volumes of reservoir and micropores, respectively [m’]
X(t) :nondimensional forcing function

y : molar fraction of inlet stream to reservoir
Greek Letters
ol : intensity parameter measurnng the magrmtude of the molar

supply into the reservorr, N/V

B . capacity parameter, V,/V

v - overflow parameter, q/V

8. 8, :in-phase and out-of-phase characteristic function for the
transfer function F(s), defined by Hq. (39)

N N, m-phase and out-of-phase charactenistic function of fre-
quency response, defined by Eq. (40)

v : amplitude of modulation of mlet molar flow rate

s : shape factor of particle (0 for slab, 1 for cylinder and 2 for
sphere)

® : angular frequency of the perturbation in flow rate [rad/s]

Mathematical Function
I{z) :modified Bessel function of the first kind of order n

Superscript
- : variables in the Laplace domain

Subscript
i, ],k component index

Matrix and Vector Notation
Boldface letters : vectors of dimension n
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[ ] : square matrix of dimension nxn
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